# SUL MODO

D'OTTENERE

## IL MERCURIO DOLCE

DELLA MAGGIOR PERFEZIONE.

E CON LA MAGGIORE ECONOMIA.

## MEMORIA

### DI GIROLAMO MELANDRI

STUD. DI CH. E REDICINA ,

#### E GIUSEPPE MORETTI

RIP. DI FARMACIA

NELL' UNIVERSITA' DI PAVIA.

Si aggiungono alcuni esperimenti comprovanti le diversità del mercurio dolce dal precipitato bianco.

#### MILANO . MDCCCV

Presso Pigotra e Maspeno Stampatori-Librai.

Levente Consti



### AVVERTIMENTO.

UESTA Memoria, che avevamo divisato di far inserire in qualche Giornale italiano per riempirne un voto, se per avventura si fosse trovato, siamo stati animati dal Professore Sangiorgio a porla in pubblica luce separatamente sul riflesso, che non tutti i Speziali e Medici, cui può appartenere possedono le opere periodiche, in cui si poteta far collocare. Un suggerimento di un Professore assai cognito per le sue produzioni non poteva a meno di non inspirarci coraggio e determinazione a farlo. Se il contenuto in essa sarà per interessare in alcun modo il Medico ed il Farmacista tutto si dovrà alle fatiche dei maestri, che ci hanno instillato avvertimenti e dottrine; del resto speriamo che il Pubblico non ci niegherà un umile compatimento.

La dottrina risguardante i diversi stati d'ossidazione, ai quali sono suscettibili di passare le sostanze metalliche o per l'azione dell'aria, o per quella dell'acqua, e degli acidi ossigenati, ha fatto conoscere in una maniera sicura la differenza non equivoca di molti composti chimici, e farmaceutici, che prima di tal cognizione s'ignoravano del tutto, o erano avvolti in mille congetture.

Tal dottrina applicata alle preparazioni mercuriali fece conoscere tra le altre la principal differenza che si ritrova nel muriato di mercurio solubile, e nel muriato insolubile di questo metallo, ossia nel sublimato corrosivo, e nel mercurio dolce: e sebbene altre differenze rimarcabili si riscontrino in questi preparati, come si è quella della maggior quantità d'ossido mercuriale, che il mercurio dolce contiene in paragone del muriato corrosivo, pure si ammette generalmente, che la principale deve ri-

conoscersi quella dello stato maggiore d'ossidazione, in cui si trova il mercurio in quest'ultimo, che nel primo preparato. Ciascuno di questi due sali è noto, che col mezzo di chimiche operazioni può trasmutarsi nell'altro: il mercurio corrosivo, p. e., si può cangiare in mercurio dolce coll'aggiunta del mercurio corrente, ed il mercurio dolce in sublimato corrosivo combinandovi una quantità sufficiente d'ossigene, e d'acido muriatico. Uno di questi cangiamenti è comune nelle farmacie, e ci è stato tramandato fino dai tempi a noi più remoti. Esso è la mutazione del muriato di mercurio corrosivo in muriato di mercurio dolce. Questo preparato si conserva tutt' ora nella medicina, e merita d'esser conservato per i vantaggi indubitabili che esso arreca nel debellare alcune pertinaci, e comuni malattie. Sebbene il preparato sia da ritenersi nella pratica medica, pure la preparazione non sarà da conservarsi nella pratica farmaceutica, qualora altri metodi più sicuri, e vantaggiosi si esponghino, con cui ottenere questo più perfettamente, ed economicamente. I principi della moderna chimica ci hanno condotto a semplificare il processo, onde procu-

rarsi un tal preparato; la teoria dei diversi stati di ossidazione del mercurio, delle diverse proporzioni d'acido, e di base, che costituiscono il mercurio dolce, e quella delle affinità vi ci hanno condotto. Questo si è tentato in vero da altri chimici non pochi, ed abbiamo dopo Schéele vari processi, che tendono a semplificare questa preparazione: ma avendo bene analizzato i processi, che si conoscono finora, ci sembra di riscontrare nel risultato di alcuni un preparato ben diverso da quello, che conosciamo sotto il pome di mercurio dolce, ed in altri ci pare più semplice possasi ridurre la maniera d'ottenerlo. Abbiamo cercato un metodo, che unisce la maggior semplicità, sicurezza, ed economia. Se nel ritrovarlo vi siamo riusciti. siccome esso inchiuderà qualche utilità, così avremo il piacere di essere stati in qualche modo giovevoli. Ecco pertanto i principi semplici, che ci hanno condotto a tali ricerche, e ad un tale ritrovato.

I. Il mercurio dolce, ossia il muriato di mercurio ossidulo (1), è la

<sup>(</sup>t) Siccome sembra fuori d'ogni dubbio, anche per quello, che apparirà in progresso di questa

combinazione dell'acido muriatico con l'ossido nero di mercurio ad eccesso di questo.

II. Differisce questo sale dal muriato di mercurio corrosivo, ossia muriato di mercurio ippr-ossidato, per contenere il mercurio di questo una doppia quantità in circa d'ossigene, di quel che ne contenghi il muriato ossidulo, e per contenere quest'ultimo più d'una doppia quantità circa di mercurio di quel che ne contenghi il suddetto muriato iper-ossidato.

1II. Triturando in un mortajo una determinata quantità di un ossido di mercurio al maximum d'ossidazione, o di un sale mercuriale, in cui vi sia contenuto l'ossido al maximum, e di mercurio corrente, succede una divisione tra il mercurio metallico, e l'ossido

memoria, che in questa combinazione vi esista l'ossido mercariale in quantità eccessiva in paragone
di quallo, che rinviensi in un'altra preparazione
mercariale (il così detto precipitato bianco); così
per distinguere due preparati, che insieme si confonderebbero, noi chianiamo muriato ssidulo il
mercario dolce, e ritelaimo quello di muriato di
mercario semplicemento per il precipitato bianco;
lo ohiamiamo con questa desineza, e con questo
epiteto per analogia di nomenclatura coi sali in
cui eccede l'acidu, e che zi chiamano perciò aciduli,
o in cni vi eccede la huse, che allora si chiamano
alcalinali, e terrali.

sidato al maximum; formandosi una massa omogenea, in cui l'ossido di mercurio si trova ridotto al minimum, ed il mercurio ossidato del pari al minimum.

IV. Avendo adunque un solfato p.e. di mercurio, in cui l'ossido mercuriale si trovi allo stato di massima ossidazione, si potrà ridurre allo stato di minima, triturandolo con una quantità determinata di mercurio corrente.

V. Se il solfato di mercurio iperossidato si ritrovi in quel rapporto relativamente ai componenti, nel quale ritrovasi il muriato di mercurio iperossidato, anche un nuovo sale risultante dall' unione, che si farà del mercurio corrente col menzionato sale (solfato di mercurio iper-ossidato), sarà in un rapporto eguale col muriato di mercurio ossidulo, purchè le quantità del mercurio aggiuntovi sieno proporzionali a quelle adoperate per quest' ultimo. Quindi starà il muriato corrosivo al solfato iper-ossidato, come il muriato ossidulo al solfato risultante, perciò dallo stesso nome.

VI. Aggiungendo una quantità proporzionata di muriato di soda al predetto solfato ossidulo di mercurio, dovrà succedere una doppia decomposizione, e l'acido del sale aggiunto, combinandosi al mercurio ossidato, darà origine al muriato ossidulo di mercurio, nel mentre che l'acido di questo sale metallico, unendosi alla soda, formerà il solfato di soda. Il fuoco separerà questi due nuovi composti.

Da questi principi generali siamo stati condotti ad alcune sperienze necessarie per venire in chiaro su di alcuni punti applicabili a quanto abbiamo esposto nel penultimo numero. Queste sperienze sono relative al procurarci un solfato di mercurio, in cui questo metallo vi fosse contenuto in istato di massima ossidazione, ed in cni l'acido si trovasse in un rapporto coll'ossido mercuriale prossimo a quello, in cui si ritrova l'acido muriatico col medesimo ossido nel sublimato corrosivo (2). Per ginngere alla prima cognizione era facilissimo, poichè vi è un criterio di chiunque a portata, per mezzo del quale si conosce facilmente, quando il mercurio è passato al maximum: questo si è quello di

<sup>(</sup>a) O per parlare più precisamente, in cui l'acido si trocasse in una quantità sufficiente per scolere dal murinto di soda l'acido necessario per formare col mercurso spersossidato il mercurso sublimato ogravosso.

trattare il solfato ottenuto coll'acido muriatico, il quale scioglie la totalità, se il nercurio si ritrova al maximum d'ossidazione, lasciando qualche residuo bianco, se porzione d'ossido di mercurio ritrovasi al minimum.

Per arrivare alla seconda si sono dovute tentare con più necessità le sperienze, che andiamo ad enunciare.

Abbiamo preso due parti e mezza d'acido solforico, la di cui densità era = 1,8443, ed una parte di mercurio corrente: posti in una storta si è intrapresa la distillazione: alle prime impressioni del fuoco è incominciata l'azione, e si è presentata un' effervescenza alla superficie del mercurio. cui è venuto dietro uno sviluppo considerevole di gas acido solforoso. La storta si è resa tutta opaca, e si è mantenuta così, finchè fu sparito il mercurio metallico. Protratta la distillazione fino al punzo, in cui non compariva più liquida la materia, si è formata una massa salina secca, e bianca, la quale mandava pre anche dei vapori solforosi. Si è mantenuto il suoco finchè si vide svilupparsi di questo gas acido solforoso. Quando fu cessata questa emissione si è levata la storta dal fuoco, ed estratta la

materia salina, la quale era di color bianco, assai porosa, e presentava tanti piccioli cristalli opachi aventi un sapore acido metallico disgustosissimo. Trattatane una porzione coll' acido muriatico, questa si disciolse quasi nella totalità, restandovi però qualche atomo di precipitato bianco nel fondo del vaso. Avendo lasciata nel mortajo la suddetta materia, ed all'aria, che trovavasi alquanto umida, si rinvenne il giorno susseguente cangiata in un liquido galleggiante, ed in una sostanza bianca al fondo precipitata. Acidissimo era il liquido galleggiante; ci siamo accorti allora essere accaduta. spontaneamente la separazione dei solfati, che da questa massa salina hanno ottenuto i Sigg. Fourcroy, Berthollet (il figlio), ed altri chimici. Senza fare ulteriori sperienze sopra questi differenti sali, che si potevano estrarre a parte, esperienze, che non erano forse analoghe allo scopo che ci eravamo prefissi, e che sono già state fatte, e replicate con tutta l'esattezza possibile dai sullodati chimici, abbiamo rimesso il miscuglio di bel nuovo al fuoco, e fatto evaporare fino a siccità. Indi non contenti di questo stato della massa salina, si è spinto il fuoco, e per ossidare quel po' di mercurio, che si era conosciuto esistervi ossidato al minimo, e per far evaporare una quantità d'acido solforico, che si era riconosciuta eccessiva. Si mantenne il fuoco al punto di arroventare oscuramente il fondo del matraccio per un'ora circa. Levata la materia dal fuoco, e dal matraccio si rinvenne per anche albicante alla superficie, ma gialloguola nel fondo, dove aveva sofferto il massimo grado di calore. Polverizzata in un mortajo di vetro, e trattatane una porzione coll' acido muriatico, questo la sciolse interamente. La potassa caustica precipitò la soluzione suddetta in colore arancio, e diede un color simile alla massa salina stessa. Triturata con una porzione di muriato di soda, non si sviluppò alcun vapore bianco d'acido muriatico. Vi era adunque il mercurio ossidato al maximum, nè vi si trovava acido eccessivamente libero. Analizzata per mezzo della potassa caustica, ci diede ogni cento parti 45 d'acido, e 55 d'ossido mercuriale. Queste proporzioni si allontanano alquanto da quelle che sono necessario perchè sia questo sale in qualche rapporto col sublimato corrosivo: l'acido è per anche eccessivo.

Si è distillato per la seconda volta dell'acido solforico sul mercurio, come nell' esperimento primo, ma questa: volta non ci siamo serviti che di una parte e mezza di acido solforico sopra' una di mercurio corrente. Ridotta l'operazione nello stato poc'anzi indicato, cioè a quel punto, in cui non emanava più acido solforoso, abbiamo trovato, che l'acido era ancora abbondante, e che si poteva diminuirne la quantità. Si sono prese pertanto parti eguali d'acido solforico, e di mercurio (l'acido solforico era di una densità = 1,898), e si sono distillati in una storta come nel primo, e secondo esperimento. Nel fine della distillazione si è spinto il fuoco, e mantenuta la storta per una mezz'ora in uno stato di arroventamento oscuro: levata la materia salina si è polverizzata in un mortajo di vetro, e saggiata nei modi indicati più sopra. Avendo trovate delle proporzioni (3), che si potevano supporre

<sup>(3)</sup> Le proporzioni d'acido, e di base erano in 100 parti, 36 d'acido, e 65 di haso Si poteva far di meno d'attendere questa proporzione, ed ottenere ciò non estante il sublimato corrosivo, purche l'ossido fosse passato allo stato di massima ossidazione. Il sublimato corrosivo pero che si otterrebbe in questo modo, sarebbe acidulo, poiche

abbastanza giuste, perchè mescolate al muriato di soda, dassero origine al sublimato corrosivo, e l'ossido mercuriale esseudo ridotto nella totalità alla massinia ossidazione, si cominciò a pensare alle proporzioni di mercurio corrente, che si dovevano aggiungere a questa massa salina per ridurla nelle circostanze da dar origine al mercurio dolce mescolata al muriato di soda; e siccome sembra determinato dai chimici, che circa il doppio d'ossigene contiene l'ossido mercuriale al massimo, di quel che ne contenghi l'ossido al minimo, così si pensò, che estinguendovi dentro un peso eguale di mercurio all' impiegato da prima, si otterrebbe un solfato di mercurio al minimum di ossidazione, e ad eccesso d'ossido, capace perciò di dare origine al muriato di mercurio ossidulo trattandolo col muriato di soda: diffatti si aggiunso alla massa solforico-mercuriale un' altra parte eguale alla prima di mercurio corrente, e si procedè all' estinzione del medesimo, la quale ebbe luogo in termine di pochissimo tempo.

l'acido solforico ritrovandosi in eccesso, avrebhe sviluppato una proporzionata quantità d'acido muriatico dal muriato di soda, ed avrebbe reso acidulo quel sale ohe si richiede non tale.

370

Si ottenne una massa cinerea, la quale diveniva bianca cell'acido muriatico, nè punto si scioglieva in quest'acido. La potassa caustica, e l'acqua di calce la cambiavano immantinente in un color bigio. Analizzata constava d' acido 22. base 78. Altro non restava ora che determinare la quantità del sale marino da aggiungere a questa massa salina per ottenere il muriato ossidulo di mercurio col mezzo della sublimazione, Fatta l'analisi del mercurio dolce ottenuto col metodo antico ci risultò contenere questo sale 15. in 16. centesimi d'acido, e 65. in 84. di base; e dopo alcune sperienze fatte, che qui tralasciamo per brevità, ci risultò essere la giusta proporzione del muriato di soda deacquificato quella di 0,425. della massa solforico-mercuriale cinerea, ossia 3/8 del peso della suddetta massa salina (4). Mescolato pertanto

<sup>(4)</sup> Si è determinato la proporzione di sale marino da aggiungere al solicito ossidolo serplicemento per cercare l'economia della preparazione; del resto il potrebbe aggiungere nua quantità dupla, tripla ec. del sale preseritto, senza che ne prorenisse nessona mutarione nel movo comporto (il mercurio dolce). Sono le proporzioni d'acido solforico esistenti nel solitate ossidulo quelle che determinano le proporzioni d'acido muriatico nel muriato che si ecro ad formaro. L'acido solforio

esattamente il solfato ossidulo di mercurio col muriato di soda sottilmente polverizzato, si è posto il miscuglio diviso in alcuni matracci, e si è proceduto alla sublimazione spingendo il fuoco nel terminare di questa per ottenere le ultime porzioni di mercurio dolce. Raffreddato l'apparecchio, ed estratta la materia sublimata, si è trovata composta di bei cristalli bianchi duttili, e di niun sapore sensibile; triturata in un mortajo di vetro, prese un color gialliccio, e trattata coll'acqua di calce, cogli alcali caustici, diventò di un colore bigio. In una parola aveva tutti i caratteri del mercurio dolce. ottenuto col metodo degli antichi. È da notarsi, che tutte le volte, che abbiamo ripetuto con facilità quest' operazione non ci è mai accaduto di ottenere nessuna mollecola di sublimato

del solfato decompone la quantità di muriato di soda che è capace, molta se lni sarà abbondante, poca se sarà egli steno in poca quantità: quindi si svilupperanno delle quantità proporzionate d'acido muriatico, che si uniranno all'osido mercuria-le, formando un nuovo sale, il quale si accosterà tanto più, o vi si discosterà dallo stato neutro, quanto più vi si avvicinava, od allontanava il solfato che si è impigato ci dato sempre nell' altro sale (muriato di soda) uno stato di perfetta neutralizzazione.

corrosivo, avendo esposto anche la materia che occupava il colmo, ed il collo dei matracci all'azione della potassa, e non avendo osservato formarsi nessuna macchia ranciata, come suole accadere ogni qual volta vi si ritrova del sublimato corrosivo. Non na bisogno adunque di nessuna lavatura, nè di ulteriore sublimazione come il muriato dolce di mercurio ottenuto con alcuni dei processi datici da attri autori.

Per epilogare in breve tutto quello, che è d'uopo per questo processo, sono necessarie

I. Parti eguali di mercurio corrente ed acido solforico concentrato a 1,898. (in mancanza dell'acido d'una tal concentrazione abbiamo adoperato anche quello della Fabbrica di Milano; ma siccome è di una densità minore, così ne abbiamo dovuto impiegare una maggiore quantità avendone adoperato 14. parti sopra 12. di mercurio.)

II. Distillarli in una storta fintanto, che si sviluppa gas acido solforoso, spingendo alquanto il fuoco al termine della distillazione.

III. Estinguere nella massa salina altrettanto mercurio quanto se n'è impiegato da prima. IV. Mescolare la massa risultante con 3/2 del suo peso di muriato di soda deacquificato, e sottilimente polverizzato.

V. Collocare il miscuglio in un vaso sublimatorio, e procedere alla sublimazione secondo l'arte. Operando con precisione nella unione delle surriferite sostanze, si otteral il mercurio dolce del peso del mercurio impiegato, più l'aumento del 15. o 16. per cento (5). Nel fondo del matraccio resta il solfato di soda, che si potrebbe usare senza pregiudizio, adoperando però la precauzione di saggiarlo per vedere se contiene qualche porzione de' metalli uniti per lo più al mercurio di commercio, all'acido solforico, ed al muriato di soda. Abbiamo trovato generalmente che vi resta una sostanza rossa insolubile, che si è riconosciuto

<sup>(5)</sup> Per ottenere un tal anmento bisogna operare con diligenza, e nella distillazione dell'acido solforico col mercurio, nella quale si potrebbe sollevare del mercurio metallico, se si facesse precipitosamente, e nell'estinacione del mercurio, che deve esser completa, altrimenti se ne perificarebbe nella successiva sublimazione. L'ammento che si ottiene in questa preparsione dipende, come è chiaro, dalla quantità d'ossigene, cui il mercurio si combina, e da quella dell'acido muristico, che salifica l'ossido mercuriale formatosi.

per ossido rosso di piombo, e di ferro (6). Se si esamini l'esposto processo, e si paragoni ai molteplici, che per ottenere un tal preparato farmaceutico, si hanno, si vedrà, che li supera e per la semplicità, e per la comodità, sicurezza, ed economia.

Nel mentre che avevamo ultimato questo lavoro, avendo comunicato il processo al Sig. Prof. Sangiorgio, si ebbe da questo illustre Chimico notizia di un analogo processo pubblicato in Germania 15. anni sono in circa dai Chimici Bontz e Benthley, ed inserito dal Sig. Hagen nella sua farmacia: ma avendo noi esaminato il processo dato da questi chimici, abbiamo trovato, che differiva in molte parti, e sebbene vi si riscontri dell'analogia, pure nelle cose più interessanti, che sono quelle, che risguardano la sicu-

<sup>(6)</sup> Il chiarissimo Professore Sangiorgio ha ottenuto da questo residuo una buona quantità di detta sostanza, la quele aveva un bellissimo colore rosso, più intenso di quello che avera la ottenuta da noi. Dull'esame fatto di una porsione di essa, che ci favorì il menzionato Professore ci risulto sesere puro ossido di ferro rosso, poiché insolubile nell'acido muriatto, vi si sciolse completamente coll'ajuto di un poco di suncchero e del calore, e la soluzione precipitò in azzurro col prussiato di calce, ed in golor verde cupo coll'ammontaca casutica.

rezza, ed economia della preparazione, e la realtà del preparato è del tutto differente.

Per poter far meglio conoscere questa differenza trascriviamo quì il processo de' suddetti Chimici tal quale ci fu spedito dal chiarissimo Professoro Sangiorgio. "Secondo questo metodo , si fanno in una storta disciogliere " otto once di mercurio in dieci once " d'olio di vetriuolo d'Inghilterra, e " mettendo alla storta un recipiente si " distilla fino a secchezza. Il bianco , residuo che è nella storta è un vero " vetriuolo di mercurio. Questo re-" siduo si tritura in un mortajo di , vetro con cinque once di mercurio " e nove once di sal comune decrepi-" tato. In quest' operazione suol d'or-" dinario riscaldarsi la mistura, e man-" dare dei vapori acri, dai quali bi-" sogna guardarsi per quanto è possi-" bile. Questa mistura si distribuisce " in piccioli vetri sublimatori, e si " sublima col metodo già indicato ec. « Essi impiegano adunque maggior quantità d'acido solforico, maggiore di muriato di soda, ed ottengono minore quantità di mercurio dolce. Di più nella miscela del muriato di soda col solfato di mercurio si sviluppa una

quantità d'acido muriatico, dai vapori del quale avvisano doversi guardare l'operatore. Vi sarà per questo sempre l'incomodo di dover ben lavare il sublimato che si ottiene, e lavarlo con qualche perdita non indifferente, poichè per quello che abbiamo potuto rilevare si forma sempre del sublimato corrosivo (7), il quale dovrà essere tanto più abbondante quanto fu maggiore lo stato di diseccamento, a cui si ridusse la massa solforico-mercuriale, in cui si estiuguono i soli 58 di mercurio dell'impiegato da prima. Finalmente l'inconveniente più rimarchevole, cui si va incontro operando alla maniera dei menzionati Chimici, si è di ottenere invece di mercurio dolce un vero precipitato bianco a motivo dell' eccessiva quantità d'acido muriatico che si trova presente (8). Questo solo motivo

<sup>(?)</sup> Anzi avendo di poi ripetuto con tutta l'esattezza possibile prescritta da ichimici redeschi il loro processo, abbiamo ottenuta una quantità sorprendente di sublimato corrosivo, giugnendo essa per sino ad un terzo e più della massa salina ottenuta.

<sup>(8)</sup> Non è questa una gratuita asserzione, ma na saserzione dedotta dall'esperienza; abbiamo sottomesso il mercurio dolce ottenuto col metodo di Bontz e Benthley, e gli esperimenti, che si indieberanno più abbasso (vedi Esp. 1. e a.), e nel li quor superstite non abbiamo rinvenuto traccia al-

dovrebbe bastare per dimostrare la differenza dell'esposto processo, e di quello dei Sigg. Bontz e Benthley, e dovrebbe porre in dimenticanza un tal metodo, e tanti quanti se ne contano di quelli, i quali sotto il nome di processi semplificanti, invece di mercurio dolce somministrano il precipitato bianco, se però v'ha differenza tra questi due preparati, il che se non è stato abbastanza comprovato in passato da convincere chiunque, speriamo lo sarà dalle riflessioni, ed esperienze, che qui dietro riportiamo.

Esperienze comprovanti la differenza del muriato di mercurio dolce, e del muriato di mercurio per precipitazione.

Era già stato conosciuto dai Medici il diverso modo d'agire sul sistema animale del mercurio dolce, paragonato al così detto precipitato bianco, e si proponeva quest' ultimo piuttosto per uso esterno, di quello, che per interno rimedio, a cui invece si sostituiva più sicuramente il mercurio



cuna ne di ossido mercuriale, ne di acido muriatico, per la qual cosa si conclude, che si è soomposto nelle due fatte esperienze, e ricomposto uno stesso sale (precipitato bianco).

dolce. S' indicavano le differenze di questi due medicamenti con espressioni prese immediatamente dai loro esterni caratteri, e si diceva che il mercurio precipitato bianco era più acre del mercurio dolce (9). In seguito il chiarissimo Sig. Professore Brugnatelli asserì, che la diversità di questi due chimici prodotti dipendeva da ciò, che il mercurio dolce contenendo una maggior quantità d'ossido mercuriale in paragone del precipitato bianco, si doveva considerare il primo di questi in relazione al secondo come un sale ad eccesso di base: diffatti egli distinse questi con nomi significanti, chiamando ossimuriato di mercurio termossidulo il mercurio dolce, ed ossimuriato di mercurio semplicemente il precipitato bianco. In appoggio di quest' asserzione il sullodato Professore diede un processo per ottenere il mercurio dolce (10), il quale nel mentre che po-

<sup>(9)</sup> E' assi tempo che i Siguori Professori Carminati, e Marabelli esperienze facendo sul modo d'agire del precipitato bianco, s'accorsero, che esso agiva in una maniera per conì dire allarmante e pericolosa, osservando da picciole dosi esser prodotti presi\u00e3 apos concerti, che avvenir so, gliono generalmente nell' no interno del sublimato corrosivo.

<sup>(10)</sup> V. Annali di Chimica e Storia Nat. T. XVII.

teva forse unire una certa economia e comodità nel prepararlo, somministrava una prova sufficiente per conchiudere, che il muriato dolce di mercurio era mercurio precipitato bianco più ossido mercuriale, ossia muriato di mercurio ad eccesso d'ossido. Non queste conosciute differenze ostante dalla pratica medica, e dalla chimica esperienza avvalorate si trova al. giorno d'oggi una gran parte di Chimici, principalmente della Francia, che risguardano identici i menzionati due preparati, e nell'insegnare il modo d'ottenere il mercurio dolce, ci danno il processo per fare il precipitato bianco (11). Schéele, dicono, ha semplificato il processo per ottenere il mercurio dolce, servendosi della decomposizione del nitrato mercuriale per mezzo del muriato di soda ec. (12).

<sup>(1)</sup> Vedi Fourcoy = Systeme des connoissances chimiques ec. Tom. III. pag. 295. 96, ediz. in 4.º Choptal = Elementi di Chimica tom. II. pag. 393, traduzione di Caldani, Venezia, ed altri autori moltissimi.

<sup>(12)</sup> Faucroy (luogo citato) dice intorno al metodo proponto da Schéele (o piutosto da Chaptal):
Le muriate de mercure est aussi doux, et aussi pur
que celai qui est preparé pur la trituration, l'estimction, et la sublimation: ce procéde est simple, facile et sir; il n'a aucun de, inconcenieni de ce dernier, et il tui est beaucoup preferable... Se sark ciò
vero lo vedià il lettore al terminar di leggere la
pietente Memoria.

Nei tempi attuali, in cui la chimica ha fatto dei passi giganteschi verso la perfezione, sembra in realtà sorprendente, che in cose facilmente determinabili per mezzo dell'esperienza regni cotanta disparità nelle opinioni, e poco calcolo si faccia dei fatti che invitano a nuovi tentativi per venire in chiaro della verità. L'esperienze seguenti sono state istituite dietro tali riflessi, e se dopo di queste qualcuno ritroverassi per anche refrattario (ci sia permessa questa espressione ) circa l'ammettere una differenza tra il mercurio dolce, ed il così detto precipitato bianco, siccome si tratterà di contrastar coi fatti, e colla ragione. così sarà da condannarsi, e da riputarsi privo di buon senso. Cominciamo dal ragionare così. Siano per ipotesi chimicamente identici il mercurio dolce, ed il precipitato bianco: l'unica diversità, che dovrassi riconoscere in questi due preparati, sarà puramente fisica, cioè a dire differiranno tra essi per l'aspetto esteriore, e per il diverso modo impiegato nella preparazione loro. Si decomponghi il mercurio dolce, e si ottenghino separati l'acido muriatico, e l'ossido mercuriale; se questi due principi si ponghino nelle circostanze atte a dar origine per la loro scambievole combinazione al precipitato bianco, non dovranno questi dopo la loro unione lasciare alcun residuo, cioè a dire tutto l'acido muriatico del muriato decomposto, dovrà combinarsi a tutto l'ossido mercuriale dell'istesso muriato, e formare in simil maniera il precipitato bianco, sale per ipotesi chimicamente identico col mercurio dolce; se succederà il contrario, ossia se qualche residuo non combinato si otterrà in un simile esperimento, sarà dimostrata la non identità dei suddetti due chimici prodotti.

## ESPERIMENTO I.

Si è presa una bottiglia, in cui si sono collocate too parti di mercurio dolce sottilmente polverizzato; vi si è versato sopra una soluzione di potassa caustica ottenuta per l'alcoole, la quale era purissima. Agitato il miscuglio ohe alla prima unione si è subitamente annerito (13), abbiamo decantato il liquido galleggiante in un recipiente A., ed indi lavato il deposito nero con acqua distillata, versando sempre le la-



<sup>(13)</sup> Essendosi formato, come a chiunque Farmacista e Medico deve esser ben noto, il precipitato solubile del Moscati.

vature nel recipiente suddetto. Ciò fatto si è affuso dell' acido nitrico purissimo e bianco sufficientemente diluito con acqua sul deposito nero, il quale è restato in gran parte disciolto. Non ostante che l'alcali si fosse impiegato in una quantità eccessiva (14), pure non fu capace di decomporre tutto il muriato di mercurio dolce, imperciocchè l'acido nitrico ha lasciato un sedimento bianco, abbastanza riconosciuto per muriato indecomposto. Si è lavato questo con diligenza, e si è riposta la soluzione nitrica, e le lavature acide in un secondo recipiente B. Il sedimento bianco si è ritrattato con nuova potassa caustica, ed indi il deposito nero con nuovo acido nitrico, fintanto che si è ottenuta una totale decomposizione del mercurio dolce. Per mezzo di queste operazioni si so-

<sup>(14)</sup> L'eccesso della potenza alcalina non dovera certamente bastare per eludere l'affinità, che una granule quantità d'ossido mercuriale esercitura su la piecola quantità d'acido muriatio in combinazione, o almeno grandissimo dovera esser quest' cocesso di potenza, per vincere l'attrasione che l'ossido mercuriale possiede, determinata, nella sua grandezza, dalla coesione delle particelle della combinazione (muriato di mercurio): conventva pertanto sottrarre una quantità d'ossido mercuriale, perchè la potassa s'approprissas il residuo acido muriatico del muriato in decomposizione, cià che si fece in seguito.

no separati i principi del mercurio dolce, il di cui acido si è ricevuto unito alla potassa nel recipiente A., e la sua base nell'altro recipiente B. disciolta dall'acido nitrico.

#### ESPERIMENTO II.

Si sono prese le due soluzioni riposte nei recipienti A. B., e si è saturato l'eccesso dell'alcali nel recipiente A. con acido nitrico. In seguito si sono riuniti i due liquidi in un solo, dalla qual unione ne è succeduto, come era naturale, un intorbidamento, ed un deposito di mollecole bianche, che erano il precipitato bianco. Si è feltrato il liquido, e raccolto il precipitato sul feltro, che ben lavato, e diseccato ad un calor di stufa pesò 95 parti. Il liquor chiaro passato dal feltro si è trattato con una soluzione di nitrato mercuriale fatto a freddo. la quale non vi ha portato nessun cangiamento. Un'altra porzione dello stesso liquido tentata colla soluzione di muriato di soda, si è fortemente intorbidata, ed ha somministrato del nuovo precipitato bianco. Vi era adunque in questo liquido dell'ossido mercuriale disciolto, ossia nella formazio-

Lescoph Cough

ne del precipitato bianco per mezzo dei principi del mercurio dolce; si è ottenuto un residuo, ciò che non doveva accadere se fossero stati chimicamente identici i suddetti due preparati. Dunque il muriato dolce di mercurio differisce dal muriato per precipitazione, la qual cosa ci eravamo

proposti di dimostrare.

Dai riferiti esperimenti non si rileva soltanto la differenza dei suddetti due sali, ma si comprende aucora consister essa nella maggior quantità d'ossido mercuriale, che il mercurio dolce contiene in paragone del precipitato bianco, ciò che, come si avvertì, era già stato detto dal celebre Prof. Brugnatelli. Si può dedurre aucora dai medesimi esperimenti la composizione del mercurio precipitato bianco, essendo nota quella del mercurio dolce; imperocchè se 100 parti di mercurio dolce composte di 85 d'ossido mercuriale, e 15 d'acido muriatico, hanno dato origine a sole 95 parti di precipitato bianco, vi è un deficit di 5 parti, e siccome tutte le 15 parti d'acido muriatico sono concorse alla formazione delle 95 parti di precipitato bianco, questo deficit è riferibile all' ossido mercuriale, e perciò il precipitato bianco sarà eguale al mercurio dolce meno 5/100 d'ossido mercuriale, ossia le 95 parti di muriato di mercurio per precipitazione, saranno composte di 15 d'acido muriatico, e 80 d'ossido mercuriale. Queste proporzioni però non le diamo come esatte, poichè come apparisce chiaramente il diverso stato di diseccamento dei due sali deve apportare una sensibile diversità nelle proporzioni dei relativi principi componenti. Se si sublimasse frattanto il precipitato bianco, si potrebbe col metodo da noi esposto dedurre le rigorose proporzioni dell' acido, e della base componenti questo sale metallico ..

Altri esperimenti non pochi, tutti comprovanti l'enunciata differenza si-potrebbero aggiungere in questo luogo: ma volontieri ci dispensiamo dal farne menzione, si perchè riferir si ponno in ultima analisi ai di già esposti, come ancora perchè ci sembra, che gli enunciati bastino a dimostrarla in una maniera quasi matematica: inutile quindi sarebbe il trattenersi nell' esposizione di fatti, dai quali si rileva, che da una soluzione nitrica della base del mercurio dolce, decomposta: colla soluzione di muriato di soda si

ottiene una maggior quantità di precipitato bianco, del mercurio dolce decomposto, che per conseguenza essendo le quantità di mercurio ossidato eguali in ambedue i composti, la differenza del peso attribiur si dee allaquantità d'acido muriatico maggiore nel precipitato bianco, che non nel mercurio dolce ec.

Esposti per quanto fu possibile chiaramente i principi di già noti, che ci hanno condotto a semplificare il processo per ottenere il muriato ossidulo di mercurio, e le circostanze necessarie, perchè qualunque farmacista, o chimico riesca facilmente in tale operazione: dimostrata con r ovi esperimenti la differenza di questo composto dal così detto precipitato bianco non ci resta più a compimento di questa Memoria che inculcare ai medesimi rapporto al primo l'uso di questo metodo assicurandoli, che tale inalterabilmente lo ritroveranno, quale da noi fu sinceramente esposto, e rapporto al secondo di riconoscere la reale differenza del mercurio dolce e del precipitato bianco inclusa nella maggior quantità d'ossido mercuriale, che il primo contiene paragonato al secondo preparato.

5835084

· — in lange

county billings

Digitized by Google

.